An Empirical Study of Functional Complexity as an Indicator of Overfitting in Genetic Programming
نویسندگان
چکیده
1 Instituto Tecnológico de Tijuana, Av. Tecnológico S/N, Tijuana, BC, México 2 INESC-ID Lisboa, KDBIO group, Lisbon, Portugal 3 CISUC, ECOS group, University of Coimbra, Portugal 4 IMB, Institut de Mathématiques de Bordeaux, UMR CNRS 5251, France 5 ALEA Team at INRIA Bordeaux Sud-Ouest, France 6 Department of Informatics, Systems and Communication (D.I.S.Co.), University of Milano-Bicocca, Milan, Italy [email protected], [email protected], [email protected], [email protected]
منابع مشابه
A Mathematical Programming Model and Genetic Algorithm for a Multi-Product Single Machine Scheduling Problem with Rework Processes
In this paper, a multi-product single machine scheduling problem with the possibility of producing defected jobs, is considered. We concern rework in the scheduling environment and propose a mixed-integer programming (MIP) model for the problem. Based on the philosophy of just-in-time production, minimization of the sum of earliness and tardiness costs is taken into account as the objective fu...
متن کاملA stochastic model for project selection and scheduling problem
Resource limitation in zero time may cause to some profitable projects not to be selected in project selection problem, thus simultaneous project portfolio selection and scheduling problem has received significant attention. In this study, budget, investment costs and earnings are considered to be stochastic. The objectives are maximizing net present values of selected projects and minimizing v...
متن کاملNetwork Planning Using Iterative Improvement Methods and Heuristic Techniques
The problem of minimum-cost expansion of power transmission network is formulated as a genetic algorithm with the cost of new lines and security constraints and Kirchhoff’s Law at each bus bar included. A genetic algorithm (GA) is a search or optimization algorithm based on the mechanics of natural selection and genetics. An applied example is presented. The results from a set of tests carried ...
متن کاملA Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملA New Correlation Based on Multi-Gene Genetic Programming for Predicting the Sweet Natural Gas Compressibility Factor
Gas compressibility factor (z-factor) is an important parameter widely applied in petroleum and chemical engineering. Experimental measurements, equations of state (EOSs) and empirical correlations are the most common sources in z-factor calculations. However, these methods have serious limitations such as being time-consuming as well as those from a computational point of view, like instabilit...
متن کامل